INDUSTRIA 4.0: EXPLORANDO SU APLICACIÓN AL SECTOR AERONÁUTICO Y ESPACIAL PARA EL DESARROLLO DE LA FUERZA AÉREA COLOMBIANA

Industry 4.0: Exploring its application to the aeronautical and space sector for the development of the Colombian Air Force

Karen García Muñoz³⁴

kdgarciam@emavi.edu.co Escuela Militar de Aviación "Marco Fidel Suárez" Colombia

Néstor León Cadena³⁵

ndleonc@emavi.edu.co Escuela Militar de Aviación "Marco Fidel Suárez" Colombia

Recepción: 09.04.2021 Aceptación: 16.04.2021

Resumen

Esta investigación se está desarrollando dentro de las actividades del Semillero de Investigación en Logística e Industria Aeronáutica - SILOGA de la Escuela Militar de Aviación "Marco Fidel Suárez". El objetivo principal es identificar la industria 4.0 en el sector aeronáutico y espacial como oportunidad estratégica para el desarrollo de la Fuerza Aérea Colombiana - FAC. Se busca determinar las fuentes de información de la industria 4.0, sus aplicaciones a nivel mundial y sus avances; además de conocer los desarrollos de esta temática en la industria aeronáutica. Es por esto por lo que, analizar las fuentes de información obtenidas para el desarrollo de las posibles implementaciones de la industria 4.0 en el sector aeronáutico y espacial, permitirá finalmente, proponer estrategias que contribuyan a la planeación, a través de procesos de innovación, del desarrollo de investigaciones en esta Industria en la FAC. La metodología que se propone para abordar esta investigación es un enfoque mixto (cualitativo y cuantitativo), basado en un método de tipo analítico-deductivo y el tipo de estudio es exploratorio-descriptivo, que involucra una serie de búsqueda, análisis y propuestas sobre las distintas capacidades que posee la industria 4.0 y que contribuya al desarrollo de las capacidades de la Fuerza Aérea Colombiana.

Palabras clave

Aeroespacial; Industria 4.0; Innovación; Tecnología.

³⁴ Cadete de tercer año de la Escuela Militar de Aviación "Marco Fidel Suárez". Estudiante del programa de Administración Semillero de Investigación SILOGA. Grupo de investigación GICMA. Cali (Colombia)

³⁵Cadete de segundo año de la Escuela Militar de Aviación "Marco Fidel Suárez". Estudiante del programa de Administración Semillero de Investigación SILOGA. Grupo de investigación GICMA. Cali (Colombia)

Publicación anual. |. Vol 1. No. 3. Año 3. (2021). |. ISSN (En línea): 2805-5934 |. Bogotá - Colombia

Abstract

This research is carried out within the activities of the Aviation Industry and Logistics Research Seedbed - SILOGA of the Military Aviation School Marco Fidel Suarez. The main objective is to identify Industry 4.0 in the aeronautical and space sector as a strategic opportunity for the development of the Colombian Air Force - FAC. It seeks to determine sources of information for Industry 4.0, its applications worldwide, and its advances; also, to know the developments of this subject in the aeronautical industry. Therefore analyzing the sources of information obtained for the development of possible implementations of Industry 4.0 in the aeronautical and space sector, probably finally, proposing strategies that contribute to the planning, through innovation processes, of the development of research in this Industry in the FAC. The methodology that is proposed to address this research is a mixed approach (qualitative and quantitative), based on an analytical-deductive method and the type of study is exploratory-descriptive, which involves

a series of searches, analyzes, and proposals on the different capabilities of Industry 4.0 that contribute to

the development of the capabilities of the FAC

Keywords

Aerospace; Industry 4.0; Innovation; Technology.

Introducción

En el presente trabajo se a bordarán diferentes problemas detectados en la Fuerza

Aérea Colombiana. Como la desactualización y métodos tradicionales utilizados en sus

procesos y actividades, por lo cual, se plantea la necesidad de identificar cómo la

industria 4.0 puede ser aplicada al sector aeronáutico y espacial, y se convierte así, en

una oportunidad estratégica para el desarrollo de la Institución. En esta propuesta de

investigación se requiere conocer los avances y el desarrollo tecnológico de esta

industria, identificando fuentes de información, sus aplicaciones a nivel mundial y sus

avances desarrollados en la industria aeronáutica, que ayuden a reducir la brecha en la

que se encuentra la Fuerza Aérea Colombiana respecto a otros países, en cuanto a

ventajas operacionales y tecnológicas.

Para ello se analizarán las fuentes de información obtenidas para identificar las

posibles implementaciones de la industria, que finalmente permitan proponer

estrategias que contribuyan a la planeación a través de procesos de innovación para el

desarrollo de la Fuerza Aérea Colombiana. Dichas estrategias permiten la mejora

continua en los procesos y la capacitación de oficiales, apoyando el ejercicio operacional

de los comandantes de grupo de las diferentes áreas estratégicas al interior de la

Cite este artículo como

García-Muñoz, K;, León-Cadena, N. (2021). Industria 4.0: explorando su aplicación al sector aeronáutico y espacial para el desarrollo de la fuerza aérea colombiana. Eficiencia, 03(03)

Publicación anual. |. Vol 1. No. 3. Año 3. (2021). |. ISSN (En línea): 2805-5934 |. Bogotá - Colombia

Institución. Entre los alcances, se busca recomendar el uso de herramientas y equipos de la Industria, su adquisición y capacitación del personal con el propósito de que se evidencien los beneficios de la implementación de nuevas tecnologías.

Marco referencial

En el mundo cada vez se genera más controversia por el tránsito en la tecnología 4.0 debido a que gran parte de las personas se acostumbraron a los métodos clásicos en la industria, pasando de la digitalización de los procesos a la interconexión digital entre máquina, persona y objetos. No obstante, para poner de relieve la fisura que la Industria 4.0 también representa, se habla ya de la cuarta Revolución Industrial, que, por otra parte, más bien reviste en realidad rasgos de «evolución» (Hudson, 2010).

A su vez, "la revolución o industria 4.0 es llamada evolución de la tecnología. Tras la primera Revolución Industrial, que fue simbolizada por la máquina de vapor y que posibilitó la mecanización de los procesos industriales, tuvo lugar, como consecuencia de la producción en masa impulsada por las cadenas de producción de Ford, una segunda Revolución Industrial" (Schroeder, 2017). Posteriormente, la tercera Revolución Industrial estuvo ya marcada por las tecnologías de la información y la comunicación, y condujo a la mecanización de los sistemas de producción (Bauernhansl, 2014).

La cuarta Revolución Industrial, por su parte, tendrá como nota característica la interconexión inteligente de productos y procesos, así como de producción industrial, técnicas de automatización, y Tecnologías de la Información y de la Comunicación (TIC), concebidas para cadenas industriales de valor integradas. Cuando en octubre del 2013 se presentó el informe "Preservación del Futuro de Alemania como Centro de Producción - Actuaciones Recomendadas para el Proyecto de Futuro Industria 4.0", este suscitó una enorme repercusión en el sistema político, llegando incluso, por momentos, a caer directamente en la euforia. Entretanto, en la actualidad, el proyecto Industria 4.0 está

considerado en Alemania como un objetivo central de la política estratégica en materia de economía e industria. (Schroeder, 2017).

Por lo tanto, se puede decir que la tecnología 4.0 nace en Alemania y es allí la cuna estratégica y de desarrollo de este país, en comparación con las economías tradicionales, ha crecido en el periodo comprendido entre 1991 y 2011. "En el caso de Asia, por ejemplo, este continente logró cuadruplicar su participación, logrando una participación del 31% en el circuito económico mundial. De esta forma se pasó de una participación cuantificada de 3.45 billones de dólares a 6.58 billones de dólares, con inversiones en el desarrollo industrial, la diferenciación de productos y el logro de ventajas competitivas" (Fernandez, 2017)

Industria 4.0.

La Industria 4.0 es una parte importante de la nueva era de transformación, la cual "integra la manufactura y la tecnología de la información para crear sistemas de manufactura innovadores, métodos de gestión y comerciales, que puedan optimizar los procesos de manufactura, lograr mayor flexibilidad y eficiencia" (Blácido-Noguerol, Flores-Chalco, Pacheco-Torres, & Pucho-León, 2021). El sello distintivo de esta revolución es la aparición de nuevas tecnologías, como la robótica, la inteligencia artificial, la nanotecnología y el Internet de las cosas.

"Es importante comprender el potencial de la cuarta revolución industrial, porque no solo afectará el proceso de fabricación, sino que, este posee un alcance más amplio, afectando a todas las industrias y sectores, e incluso a la sociedad" (Navarro, Sabalza, 2016).

tanto así que el impacto de la Industria 4.0 se puede sentir en múltiples niveles, ya sea a nivel organizacional y/o a nivel individual.

Clasificación

Fábrica Inteligente.

La industria 4.0 se une al mundo digital y transforma este medio y su productividad transformando los espacios laborales en trabajos inteligentes con un alto grado de competitividad:

"La fábrica inteligente es el cuarto pilar de la industria 4.0. Está formada por unidades de producción inteligentes (CPPS) vinculadas al ecosistema de fabricación, del que conocen su estado y limitaciones. Como cada módulo es capaz de obtener la información que necesita, la fábrica se convierte en una red de agentes que toman decisiones optimizadas a nivel local. La producción podría organizarse según un modelo de oferta-demanda donde la capacidad de los sistemas es la oferta y la demanda surge de las órdenes que deben atenderse. Cada CPPS podría decidir su programa de producción (en base a su tiempo de procesamiento, las fechas de entrega u objetivos de beneficio o sostenibilidad). Este Control de Producción descentralizado ofrece la posibilidad de fabricar cada producto de manera individual sin costes adicionales y con fechas de entrega de gran fiabilidad" (Del Val Roman, 2016).

Además, la captura masiva de datos relacionados con la producción y su análisis permitirán alcanzar niveles desconocidos hasta el momento de productividad y calidad del producto (Tascón, M., 2020).

- Inteligencia, flexibilidad, y dinamismo.
- Empleo de sensores y sistemas autónomos.
- Máquina y equipos auto-optimizables.

Autoorganización

"La gestión tecnológica se ha enfocado recientemente en la adquisición y difusión de conocimiento, más allá de la obtención o desarrollo de tecnología por sí misma, lo cual se había constituido en su principal aporte hasta hace unos diez años atrás. La gestión de la información y su transformación en conocimiento útil para la empresa se han constituido en tareas fundamentales" (Del Val Roman, 2016). De esta forma, se han involucrado nuevos conceptos en los procesos de manejo de la variable tecnológica, y se ha buscado la implementación de metodologías como el benchmarking, la prospectiva tecnológica, el mapeo y la vigilancia tecnológica, entre otras, buscando cada vez más que la información sea manejada de forma óptima y genere conocimiento como base para la toma de decisiones. (Galán, et al., 2000).

Producto Inteligente.

"El empleo masivo de sensores, la expansión de las redes y comunicaciones inalámbricas, el desarrollo de robots y máquinas cada vez más inteligentes, así como el aumento de la potencia computacional a bajo costo y el desarrollo del análisis big data serán las tecnologías base que transformarán la forma de producir" (Del Val Roman, 2016). Esta nueva revolución digital supondrá un aumento en la velocidad en la flexibilidad a la hora de fabricar, fabricación personalizada, así como mejoras en la calidad y en la productividad. (López y Mazaeda, 2016).

Sistemas Ciber físicos.

Según Fernández y Pérez (2014) en esta nueva implementación de sistemas, todos los comportamientos de los elementos cibernéticos y los elementos físicos son muy críticos ya que estos están totalmente integrados es decir trabajando en conjunto uno dependiendo del otro incluyendo controles, sensores, sistemas de información y redes. Estos sistemas deben controlarse con la mayor precaución posible ya que el más mínimo error podría causar daños irreversibles en todos los elementos ya mencionados y a los usuarios de estos sistemas. Esta nueva implementación será necesaria para la ciberdefensa de las grandes organizaciones del estado.

Ciudad inteligente

"Si se impone la tecnología de la inteligencia integrada de forma ubicua, los vehículos y los diferentes sistemas mecánicos y eléctricos de los edificios se convertirán en robots especializados, que podrán responder de manera inteligente a los entornos mayores en los que están integrados" (Galán, et al., 2000).

Además, los recursos se gestionarán de formas más sofisticadas y los efectos en los modelos de uso de espacio y en los sistemas de edificios serán inimaginables (Mitchell, 2007).

- Economía inteligente, movilidad inteligente, entorno inteligente, personas inteligentes, vida y gobierno inteligentes.
- Economía basada en el conocimiento.

Publicación anual. |. Vol 1. No. 3. Año 3. (2021). |. ISSN (En línea): 2805-5934 |. Bogotá - Colombia

Aplicaciones.

La industria 4.0 hace referencia a la tecnología y cadena de valor, los procesos

industriales de las empresas, así como su productividad y gestión en las operaciones

destacándose así:

Inteligencia artificial. Según el autor Rafel Lahoz el siglo XXI será el siglo de la vida e

inteligencia artificial, donde esta nueva era estará completamente llena de nueva tecnología

e innovaciones tecnológicas abarcando todos los aspectos en nuestro diario vivir

controlando desde la tareas más simples y comunes realizadas ya sea en el trabajo o en

nuestro hogar hasta influir en decisiones políticas, sociales y comerciales afectando así el

futuro y la vida de las nuevas generaciones. (Lahoz-Beltrá, 2010, pp. 13-14). Robots, virus

informáticos, hormigas virtuales, neuronas artificiales, mascotas artificiales, sistemas

expertos, algoritmos genéticos y evolutivos, plantas artificiales de Linden Mayer, y un largo

etcétera representan los primeros productos bioinspirados que emulan a los seres vivos o

algunas de sus facetas, ya sea el aprendizaje, la reproducción, la evolución o su

desenvolvimiento en sociedades artificialmente creadas.

Sistemas Ciber físicos. Son los sistemas con capacidades físicas y de cómputo integradas,

que pueden interactuar con humanos a través de diversos medios, permiten acceder a los

datos y servicios disponibles en la red; monitorean y controlan los procesos físicos y hacen

conexiones entre el mundo real y virtual con el internet de los servicios de fábrica inteligente

(Kagermann, 2014).

Realidad aumentada. Desde una perspectiva técnica, centros de investigación como

Vicomtech (2016) proporcionan una definición completa de los que es la realidad

aumentada y la definen como un conjunto de tecnologías asistidas por ordenador que

realzan la percepción de la realidad física al intensificar la experiencia sensorial para

suministrar información pertinente adicional, enriqueciendo así la comprensión de una

situación real específica.

Cite este artículo como

García-Muñoz, K;, León-Cadena, N. (2021). Industria 4.0: explorando su aplicación al sector aeronáutico y espacial

para el desarrollo de la fuerza aérea colombiana. Eficiencia, 03(03)

Big Data y la nube de datos. Incluye algoritmos, aplicaciones de análisis, etc. Big Data analíticas gestiona oportunidades para la mejora de futuras fábricas, procesos de fabricación y habilitar la fábrica para proporcionar nuevos productos y servicios (Babiceanu, Seker, 2016).

Internet de las cosas. En primer lugar, incluye aplicaciones de software utilizadas por uno o más negocios para apoyo a redes de valor; en segundo lugar, el monitoreo y control inteligente a través de sensores, medidores inteligentes y dispositivos móviles inteligentes donde interactúen clientes, proveedores y mayoristas, teniendo una mayor participación en el proceso.

Robots. Son quienes sustituyen a los seres humanos, constata el aspecto positivo de la robótica en relación con la salud y seguridad en el trabajo, dado que pueden mejorar las condiciones de trabajo, asumiendo los robots las tareas peligrosas que desempeñan los trabajadores. De esta manera ir en busca de la seguridad operacional. Su propuesta se basa en que los Estados miembros exijan a las empresas que se encuentran en su Estado a que informen acerca de en qué medida los robots contribuyen a sus resultados económicos. Posteriormente, se podrán determinar los correspondientes impuestos y cotizaciones al sistema de la Seguridad Social. (Sierra, 2017, pp. 133-159).

Blockchain. Es una base de datos compartida entre un grupo de entidades o grupos que permite la actualización en tiempo real, de igual manera es una base de datos que no se deja manipular fácilmente pues su información es enlazada al registro anterior y guarda las modificaciones realizadas, esta base de datos para almacenar información requiere una aprobación de las entidades implicadas asegurando así que los datos quardados allí sean verídicos y confiables.

Impresión 3D. Del Val Román (2016), hace referencia a la producción de objetos tridimensionales a partir de modelos virtuales basándose en la creación de prototipos y fabricación altamente descentralizada disminuyendo así las desventajas en eficiencia.

Sensores. Estarán involucrados en todas las etapas de fabricación, proporcionando los datos en bruto, así como la retroalimentación que es requerido por los sistemas de control. Los sistemas de control industrial se convertirán en más complejos y de amplia distribución. Las tecnologías de frecuencias de radio se unen a los módulos de control distribuidos en las redes de malla inalámbricas, sistemas a ser reconfigurados sobre la marcha de una forma que no es posible con los sistemas de control con cableado fijo. La lógica programable será cada vez más importante, ya que será imposible anticipar todos los cambios ambientales a los que deberán responder de forma dinámica los sistemas. Dispositivos inteligentes integrados conectados estarán en todas partes, y el diseño y la programación de ellos llegarán a ser mucho más difíciles (Tapia, 2016).

Tecnología aditiva. Consistente en manipular el material a escala micrométrica y depositarlo de forma precisa para construir un objeto esta tecnología aditiva es una novedad en los diferentes negocios, comenzando en 1981 cuando Hideo Kodama en su centro de investigación presento el primer modelo de impreso sólido, surgiendo así este concepto, este modelo combina el escaneo 3D, la impresión 3D, siendo esto un impacto importante en el mundo industrial, social y comercial traspasando el sector médico y de bioimpresión. Consistente en manipular el material a escala micrométrica y depositarlo de forma precisa para construir un objeto esta tecnología aditiva es una novedad en los diferentes negocios, comenzando en 1981 cuando Hideo Kodama en su centro de investigación presento el primer modelo de impreso sólido, surgiendo así este concepto, este modelo combina el escaneo 3D, la impresión 3D, siendo esto un impacto importante en el mundo industrial, social y comercial traspasando el sector médico y de bioimpresión.

Sectores.

Servicios. Cambiando la forma de interactuar los clientes, proveedores y mayoristas, etc. tomando mejores decisiones en las actividades de manufactura como en la reducción de tiempos y seguridad para sus colaboradores brindando

una gran oportunidad de avance y desarrollo para las mis pymes en el país como para las grandes organizaciones a nivel mundial que ya se encuentran implementando estas tecnologías.

Industrial. La Industria 4.0 propone un mundo en el cual las máquinas están interconectadas todo el tiempo y analizan enormes cantidades de datos en tiempo real. El objetivo de este análisis es que a través del m ismo, sean capaces de diseñar nuevos modelos de producción y sistemas de fabricación. Sin duda, son presunciones que hasta hace poco tiempo hubieran resultado increíbles, sin embargo, hoy son una tendencia real, hacia allá camina el futuro industrial y, por lo tanto, las empresas en general, y en especial las empresas de desarrollo de software y de hardware, deben estar en constante investigación, renovación y capacitación si quieren seguir vigentes (Tapia, 2016).

Agropecuario. Para Cáceres (2014), la siembra directa es la piedra angular en la que se asienta la propuesta tecnológica del agronegocio, su aporte más importante tiene que ver con la dinámica del agua en el suelo. La cobertura vegetal mejora la estructura superficial del suelo y la infiltración del agua y disminuye las pérdidas por evaporación (Tripletty, 2008; Kassam y Brammer, 2012). La mejora que introduce la siembra directa en el balance de agua del suelo es uno de los aspectos que explica la expansión de la frontera agrícola hacia la región extra pampeana, asimismo presenta un comportamiento favorable en regiones de la Pampa húmeda, por ejemplo, en relación con los problemas de erosión hídrica y eólica (Viglizzo et al, 2011). Sin embargo, también genera nuevos problemas como por ejemplo la compactación subsuperficial del suelo vinculada con el tránsito de la maquinaria agrícola (Álvarez, 2009).

Tecnología 4.0 aplicadas en la industrias aeronáutica, espacial y militar.

Aeronáutico. Su principal potencia se centra en España, caracterizándose este país por siempre encabezar la ciencia tecnológica y desarrollo en este sector, observándose cada vez más su aumento en este sector como también en Francia, Alemania, Reino Unido, Polonia, Canadá u Holanda apoyando e incentivando las estrategias nacionales que potencien su desarrollo.

Espacial. Al considerar el proceso de adopción de nuevas e innovadoras tecnologías en el sector espacial, se puede realizar una lectura preliminar en función del impacto directo que puedan tener en el país. Teniendo en cuenta como se han venido implementando a través del tiempo tecnologías que facilitan todo este tipo de procesos en los países más desarrollados, podemos dar cuenta de las siguientes necesidades que se presentan y se necesitan para la realización de operaciones en el ámbito espacial. Desde el año de 1970 la NASA tuvo la iniciativa de crear un proyecto que se basara en el uso de la tecnología robótica a los tratamientos quiricos para aquellos astronautas que tuvieran alguna complicación durante su estadía en el espacio, reemplazando así la presencia física de un cirujano profesional en situaciones de alto riesgo como lo son los accidentes masivos en ambientes hostiles o un accidente provocado por una catástrofe natural. Esta implementación de robots quirúrgicos condujo a la generación actual de tele manipuladores en tiempo real. (Marescaux, J., 2013). Por último, en el factor alimenticio en las misiones espaciales tenemos la técnica de conservación en atmósfera modificada (AM) la cual consiste en empacar los productos alimenticios en materiales con barrera a la difusión de los gases, en los cuales el ambiente gaseoso ha sido modificado para disminuir el grado de respiración, reducir el crecimiento microbiano y retrasar el deterioro enzimático con el propósito de alargar la vida útil del producto (Meneses y Valenzuela, 2008)

Militar. El director de logística de defensa y vehículos aéreos de la compañía, José Manuel Sánchez Serrano, explico en el *Aerospace & Defense mMeeting - ADM* (Sevilla, 2018) que "la revolución de los procesos logísticos está llevando de forma rápida e

inevitable hacia el sostenimiento 4.0 con la aplicación del concepto de industria 4.0 o cuarta revolución industrial en el ámbito de la defensa". Esta nueva realidad no solo llevara a que las aeronaves a monitorizar su propio estado, sino que además conocerán el entorno de la misión en la que van a intervenir y lo tendrán en cuenta para prepararse para despegar en el momento previsto.

Industria 4.0 aplicadas en las Fuerzas Armadas nacional e internacional. En el contexto de las fuerzas miliares la tecnología 4.0 a nivel mundial se está introduciendo en este sector con grandes avances de digitalización tecnológica para la fuerza y cambios revolucionarios para esta industria como ejemplo se puede observar las empresas INDRA y ENAER empresas española y chilena las cuales se encargan de producir y prestar servicios de seguridad, manteamiento, creación de sistemas autónomos como no tripulados e inteligencia artificial, con el fin de mejorar las operaciones militares volviéndolas más seguras, versátiles; permitiendo que las aeronaves de última generación puedan diagnosticar en tiempo real las condiciones de cada pieza de las máquina, permitiendo que sus sistemas analicen en corto tiempo su funcionamiento y el tiempo de vida de cada componente evitando el sobre mantenimiento, generando una gestión inteligente y proactiva de igual manera estas empresas son líderes a nivel mundial de tecnología y mantenimiento aeronáutico.

Por otra parte, las aplicaciones de IA en plataformas aéreas por medio de Big Data y analítica de Big Data mejorando así sus niveles de eficiencia y eficacia en sus procesos militares, también se observa la aplicación de las impresoras 3D utilizadas en la preparación de piezas de naves o barcos como es nombrado "fabricación aditiva que es la creación de un objeto solido sobre la base de una información de un archivo digital" (Gerrad, 2016, p. 9), y así mejorando cada vez más la creación de herramientas y productos que aceleren los procesos de comando control y apoyo logístico de mantenimiento y de entrenamiento.

Nacional. Colombia es un país en vía de desarrollo el cual algunas empresas o pymes más específicamente aún no cambian sus prácticas clásicas en sus procesos. Visto así es como Colombia al no ser potencia mundial, no se queda atrás tratando de implementar en su industria la innovación con un sinnúmero de propósitos con el fin de buscar el progreso social, y una cantidad de oportunidades que emergen en todo el país.

Cabe resaltar que algunos de los principales proveedores de tecnología en el país consideren a esta Revolución un espectáculo que vemos desde la gradería de una industria aún demasiado 'humana', y que algunos temen que sea de otra forma. Así lo afirma Giovanny Serrano, gerente de productos Unitronics en Colsein, una reconocida compañía que suministra productos y servicios de alta tecnología en Colombia desde hace más de 25 años, para quien "la Industria 4.0 es un concepto aún no muy arraigado en el país".

Por otra parte, una encuesta realizada por la Asociación de Industriales de Colombia, ANDI, el 54 % de los consultados no negó su desconocimiento en lo que se ha denominado como la Cuarta Revolución Industrial , una que lleva la inteligencia artificial, los robots colaborativos, la nanotecnología y el mundo digital a la fábrica, lo que pone en evidencia que aún no han sido suficientes los decibeles utilizados por los divulgadores de esta irremediable transformación teniendo como consecuencia que la mayor parte de la población colombiana tiene desconocimiento de esta tecnología y sus prácticas en sus labores.

Efectividad Operativa. La Industria 4.0 es una estrategia para guiar la transformación a través de la dirección general. Esta estrategia puede buscar realizar una o más ventajas que la Industria 4.0 puede aportar a la empresa, tales como: satisfacción del cliente, gestión de la información, calidad, eficiencia operativa, flexibilidad e integración de la cadena de valor. La empresa debe contar con un sistema ciberfísico, es decir, debe contar con una infraestructura técnica básica y necesaria para establecer comunicaciones, sistemas de almacenamiento y capacidades de procesamiento efectivos. Esto se debe a que varias

tecnologías relacionadas con la Industria 4.0 necesitan almacenar y procesar datos para realizar análisis en tiempo real con el fin de tomar mejores decisiones.

La tecnología en la que se basa la Industria 4.0 es otro problema difícil para lograr los objetivos competitivos y está estrechamente relacionado con la transformación. Cabe mencionar que la adquisición de tecnologías relacionadas con la Industria 4.0 no significa necesariamente transformación, ésta debe ser el resultado de los objetivos que se persiguen: conectividad y gestión de la información, digitalización y nuevas tecnologías de producción. "La transformación industrial se dirige desde la dirección general, pero debe permear de manera horizontal y vertical en todas las áreas y personal a través de una comunicación efectiva. En este sentido, la transformación debe brindar nuevas oportunidades al personal por medio de capacitación, puestos laborales y remuneración. La transformación industrial debe impactar en el bienestar de las personas, familias y sociedad en general (Rivera, 2020).

Diseño Metodológico.

Desde el postulado planteado sobre la necesidad de implementar nuevas tecnologías de industria 4.0 en la Fuerza Aérea Colombiana, no existen referencias o estudios que aborden la temática, teniendo en cuenta que el uso de tecnologías se realiza de forma tradicional, siendo necesario un análisis a profundidad del tema suscitado, se plantea la utilización de técnicas de investigación mixtas (cuantitativas y cualitativas) para abordar esta investigación, debido a que es necesario analizar el problema de una forma cualitativa, y la información recolectada será detallada mediante la interpretación y comprensión de estos factores, basado en un tipo de estudio exploratorio y descriptivo que permitirá realizar una investigación más completa sobre el contexto planteado, identificando conceptos o variables promisorias, teniendo en cuenta que en la Fuerza Aérea Colombiana este tema no es abordado con profundidad.

La base es la definición de ambos enfoques para explicar finalmente el enfoque mixto de la investigación. Se utilizarán técnicas de recolección de información como encuestas, cuestionarios, entrevistas y formularios que permiten recoger estos datos para interpretarlos, analizarlos y de acuerdo con los resultados concluir las posibilidades para tomar acción frente a las necesidades que tiene la fuerza con respecto a la nueva generación de tecnología que se evidencia cada día a nivel global.

La investigación abarcará el método cuantitativo, ya que mediante la recopilación de la información descriptiva del problema se podrá inferir de una forma estadística sobre los datos encontrados, basado en un conjunto de proceso secuencial o probatorio, por medio de un cuestionario que será realizado para personal civil y militar.

"El enfoque cuantitativo utiliza la recolección de datos para probar hipótesis con base en la medición numérica y el análisis estadístico, con el fin establecer pautas de comportamiento y probar teorías" (Hernández - Sampieri, 2018, p. 4).

Entre algunas características de este enfoque resaltados por Hernández - Sampieri (2018) son estos estudios que siguen un proceso estructurado y que deben tomarse decisiones críticas previo a la recolección de los datos, mediante los cuales se busca generalizar los resultados encontrados en un grupo o muestra a un universo o población.

La investigación basada en un enfoque cualitativo, también conocida como investigación interpretativa o etnográfica, incluye una variedad de concepciones, visiones, técnicas y estudios no cuantitativos, utilizando la recolección y análisis de los datos para afinar las preguntas de investigación o revelar nuevas interrogantes en el proceso de interpretación (Hernández - Sampieri, 2018, p. 7).

Comparado con el enfoque anterior, "los estudios cualitativos pueden desarrollar preguntas e hipótesis antes, durante o después de la recolección y el análisis de los datos" (Joyas, 2019) Los enfoques de investigación mixta no buscan reemplazar ninguna de las dos investigaciones descritas sino utilizar las fortalezas de ambos tipos de indagación, combinándolas y tratando de minimizar sus debilidades potenciales.

Hernández-Sampieri (2018 P,56) señala que estas investigaciones recogen un conjunto de procesos de recolección, análisis y vinculación de datos cuantitativos y cualitativos en un mismo estudio o una serie de investigaciones para responder a un planteamiento del problema. Con este enfoque se busca una perspectiva más amplia sobre las oportunidades generadas a partir de la identificación de estrategias que evalúen el impacto generado a partir de la aplicación de tecnologías de la Industria 4.0 en los procesos de la Fuerza Aérea Colombiana.

Discusión y conclusión:

La Industria 4.0 es una parte importante de la nueva era de transformación, la cual integra la manufactura y la tecnología de la información para crear sistemas de manufactura innovadores, métodos de gestión y comerciales, que pueden optimizar los procesos de manufactura, lograr mayor flexibilidad y eficiencia. El sello distintivo de esta revolución es la aparición de nuevas tecnologías, como la robótica, la inteligencia artificial, la nanotecnología y el Internet de las cosas.

Es importante comprender el potencial de la cuarta revolución industrial, porque no solo afectará el proceso de fabricación, sino que, este posee un alcance más amplio, afectando a todas las industrias y sectores, e incluso a la sociedad tanto así que el impacto de la Industria 4.0 se puede sentir en múltiples niveles ya sea a nivel organizacional y/o a nivel individual.

Referencias bibliográficas:

Bauernhansl, T. (Ed.). (2014). Energieeffizienz in Deutschland-eine Metastudie: Analyse und Empfehlungen. Springer-Verlag.

Blácido-Noguerol, R., Flores-Chalco, G., Pacheco-Torres, J., & Pucho-León, E. (2021). Panorama económico, politico, social ytecnológico. Lima: escuela profesional de cc. Administrativas.

Chiavenato, I. Comportamiento organizacional. Segunda edición. Colombia. 2009. P 14. (s.d.).

Cultura empresarial. [En línea]. Disponible en internet: http://www.excelencia-empresarial.com/Cultura_Empresarial.htm. (s.d.).

- Desarrollo humano. [En línea]. Disponible en: https://es.wikipedia.org/wiki/Desarrollo_humano. (s.d.).
- Del Val Román, J. L. (2016, March). Industria 4.0: la transformación digital de la industria. In Valencia: Conferencia de directores y Decanos de Ingeniería Informática, Informes CODDII.
- Díaz, Ramón. Inflación: definición, causas y efectos. Argentina, universidad nacional de Santiago del estéreo. Facultad de humanidades, ciencias sociales y de salud. p 5-6. (s.d.).
- Dominguez, Campiña y Hernández, Fernández. La gestión empresarial, un enfoque del siglo XX, desde las teorías administrativas científica, funcional, burocrática y de relaciones humanas. Trabajo de grado maestría en sistema de gestión. 2011. p 39. (s.d.).
- Fernández, J. D. (2017). La industria 4.0: Una revisión de la literatura. Desarrollo e Innovación en ingeniería, 369.
- Gutiérrez, Raúl. Clúster Aeroespacial. [En línea]. Disponible en internet: https://www.cacom4.mil.co/inglesrevista/cl%C3%BAster-aeroespacial. (s.d.).
- Hernández, Hugo. La gestión empresarial, un enfoque del siglo XX, desde las teorías administrativas científica, funcional, burocrática y de relaciones humanas. Trabajo de grado maestría en sistema de gestión. 2011. p 38. (s.d.).
- Hernández, Hugo. La gestión empresarial, un enfoque del siglo XX, desde las teorías administrativas científica, funcional, burocrática y de relaciones humanas. Trabajo de grado maestría en sistema de gestión. 2011. p 38. (s.d.).
- Huerga, H. Los procesos de gestión. [En línea]. [Citado 09-11-2016]. Disponible en internet: http://servicios.abc.gov.ar/lainstitucion/univpedagogica/especializaciones/seminario/mat erialesparadescargar/seminario4/huergo3.pdf. (s.d.).
- Hudson, J. P. (2010). Formulaciones teórico-conceptuales de la autogestión. Revista mexicana de sociología, 72(4), 571-597.
- Joya, S. C. M. (2019). Gastronomía: patrimonio cultural de Ramiriquí como promotor del turismo. Revista Vinculando.
- Kluth, A., Jäger, J., Schatz, A., & Bauernhansl, T. (2014). Evaluation of complexity management systems-systematical and maturity-based approach. *Procedia CIRP*, 17, 224-229.
- Marketing. [En línea]. Disponible en internet: http://www.degerencia.com/tema/marketing. (s.d.).
- Navarro, M., & Sabalza, X. (2016). Reflexiones sobre la Industria 4.0 desde el caso vasco. Ekonomiaz: Revista vasca de economía, (89), 142-173.
- Prokopenko, Joseph. La gestión de la productividad. Ginebra. 2009. p 9. (s.d.).
- Rentabilidad financiera. [En línea]. Disponible en internet: https://www.mytriplea.com/diccionario-financiero/rentabilidad-financiera/. (s.d.).
- Rivadeneria, Diego. Comercialización definición y conceptos. [En línea]. Disponible en internet: http://empresactualidad.blogspot.com.co/2012/03/comercializacion-definicion-y conceptos.html. (s.d.).
- Roman-Gonzalez. (2012). Tecnología aeroespacial en el mundo. Em A. &. -C. Roman-Gonzalez.
- Salas, Gustavo. La innovación: un factor clave para la competitividad de las empresas. Versión 9. Madrid. p 11. (s.d.).
- Schroeder, W. (2017). La estrategia alemana Industria 4.0: el capitalismo renano en la era de la digitalización. Friedrich Ebert Stiftung.

Publicación anual. |. Vol 1. No. 3. Año 3. (2021). |. ISSN (En línea): 2805-5934 |. Bogotá - Colombia

- Valverde, Néstor. Módico modelo de inteligencia competitiva organizacional. Trabajo de grado ingeniería industrial. Bogotá D.C. Universidad distrital Francisco José de Caldas. Facultad de ingeniería. 2011. p 35. (s.d.).
- Ventajas competitivas. [En línea]. Disponible en internet: https://es.wikipedia.org/wiki/Ventaja_competitiva. (s.d.).
- Vergara, G. (2016) Importancia de la competitividad empresarial y profesional para lograr el éxito. [En línea]. Mejora tu gestión. 2009. [Citado 18-05-2016]. Disponible en internet: http://mejoratugestion.com/mejora-tu-gestion/importancia-de-la-gestion-emp. (s.d.).